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not a contradiction, but only a reflection of the differ­
ence between the approximations employed; it is not 
surprising that the valence orbitals of atoms in com­
pounds will become largely different from those of 
free atoms when, as has been done by Craig and Zauli, 
a higher approximation is taken. The problem is 
whether the higher approximation is necessary or 
not in order to interpret electronic structures of mole­
cules. It is, therefore, a happy finding for those who 
desire matters to be as simple as possible that our 

Aprimary goal of chemistry is to elucidate the 
details of the processes occurring during chemical 

reactions. Thus, one wants to understand how all the 
bonds distort, form, and break in the transition region 
and why some reactions have high activation energies 
while others have low ones. Unfortunately, the inter­
mediate states in such reactions are quite ephemeral, 
leading to difficulties in experimentally establishing an 
unambiguous description of the states in the transition 
region. Theoretical studies of such states, however, 
can be quite informative, since we can choose the 
nuclear configuration and reaction path and can ex­
amine in detail the changes in the bonding for each 
likely course of the reaction. Even so, not every 
theoretical approach is equally useful. It is not only 
necessary that the theoretical method lead to an accurate 
description of the potential surface or interaction 
energy, but it is also important that the resulting wave 
functions lead to concepts useful in understanding the 
relationships between whole classes of reactions. 

The most generally used theoretical approach for a 
priori calculations of the wave functions of molecules 
has been the Hartree-Fock method or approximations 
thereto. Despite many successes in describing the 
ground states of molecules, this method has a key de­
ficiency in its inability to describe properly the processes 
of breaking a bond.4 We have found that an alterna-

(1) Partially supported by a grant (No. GP-15423) from the National 
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(2) Alfred P. Sloan Fellow. 
(3) NSF Predoctoral Fellow. 
(4) E.g., R. Hoffmann, J. Amer. Chem. Soc, 90, 1475 (1968). 

ylides I and II can be adequately treated by the ordinary 
procedure using the free 3d orbitals of the sulfur of 
phosphorus atom, which predicts their energies semi-
quantitatively. 
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tive approach, the generalized valence-bond (GVB) 
method, leads to a proper description of bond breaking 
and yet retains the useful orbital interpretation. This 
method has been far less extensively developed than 
the Hartree-Fock method; however, calculations on 
some simple reactions have now been carried out and 
lead to some concepts that are expected to be of rather 
general applicability. 

We will concentrate here on the description of the 
H2 + D ?± H + HD and LiH + H ^± Li + H2 ex­
change reactions with an emphasis on the orbital de­
scription of these systems in the transition region. 

The Theoretical Methods for the Calculation of 
Molecular Wave Functions 

First, some comparison between the Hartree-Fock 
and GVB methods will be appropriate. 

The Hartree-Fock Method. A common approach 
for electronic wave functions of molecules has been the 
Hartree-Fock method,5 in which the wave function is 
taken as an antisymmetrized product (determinant) of 
spatial and spin functions; the antisymmetrization 
ensures that Pauli's principle is satisfied. Thus, for H2 

the Hartree-Fock wave function is 

a[<Ml)a(l)<K2)/3(2)] = 
<tfl)0(2)[a(l)|S(2) - /3(l)a(2)] (1) 

where a is the antisymmetrizer (determinant operator), 
$ is the best possible doubly occupied spatial orbital, 

(5) D. R. Hartree, "The Calculation of Atomic Structures," Wiley, 
New York, N. Y., 1957. 
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DISTANCE IBOHR] 

Figure 1. The Hartree-Fock orbital of H2 for (a) R 
0.741 A and (b) R = 12.0 a„ = 6.35 A. 

1.4 a0 = 

and a and /3 are spin functions. For H2 the optimum 
<£ is gerade as shown6'7 in Figure 1 and can be expanded 
as 

<t> = Xl + Xr 

where xi is a function localized near the left proton and 
Xr is localized near the right one. In this expansion the 
spatial part of the total wave function is 

* ( D * ( 2 ) - (XrXr + XlXl) + (XrXl + XlXr) (2) 

(where we have omitted the electron numbers from the 
products on the right; the first term in each product 
depends on the corrdinates of electron 1 and the second 
on those of electron 2). This form (2) applies to all 
internuclear distances ^?, whereas for large internuclear 
distances the wave function should be of the form 

(XrXl + XlXr) (3) 

i.e., there should be nearly zero probability of both 
electrons being simultaneously near the same nucleus 
(here x is essentially a hydrogen Is orbital). Because 
of the spurious ionic terms in (2), the Hartree-Fock wave 
function behaves incorrectly at large R, as indicated in 
Figure 2, which compares the Hartree-Fock and exact 
energies.8 Such a poor description of the breaking or 
formation of a bond is intolerable in studies of chemical 
reactions. 

What is the problem here? It is just that the Hartree-
Fock method forces both electrons to be in one orbital, 
whereas, for large separations, we must have two singly 
occupied orbitals [as in (3)]. An obvious solution to 
this problem is to go back to (1) and allow the orbital 
to be different for the spin-up and spin-down electrons 

a[4>a(l)a(l)</>b(2)/3(2)] = 0a</>ba/3 - firfjia (4) 

(where in each term on the right the first orbital is for 
electron 1 and the second is for electron 2; similarly, 
the first spin function is for electron 1 and the second 
is for electron 2). Variationally optimizing 0 a and 0b 

in (4), one obtains the unrestricted Hartree-Fock (UHF) 
wave function.9 In this case at large R, <t>& concentrates 
on the left nucleus and <£b concentrates on the right 

(6) S. Fraga and B. J. Ransil, / . Chem. Phys., 35, 1967 (1961). 
(7) Most figures are in terms of hartree atomic units, which are 

defined such that K = 1, \e\ = 1, me = 1. In these units the unit of 
energy is the hartree (1 hartree = 27.2117 eV = 627.526 kcal) and the 
unit of iength is the bohr (1 bohr = 1 ao = 0.529177 A). For the most 
recent conversion factors, see B. N. Taylor, W. H. Parker, and D. N. 
Langenberg, Rev. Mod. Phys., 41, 375 (1969). 

(8) In Figure 2 the HF energy is from ref 6 and the exact (nonrela-
tivistic) energy is from W. Kolos and L. Wolniewicz, / . Chem. Phys., 41, 
3663 (1964). 

(9) J. A. Pople and R. K. Nesbet, ibid., 22, 471 (1954); J. C. Slater, 
Phys. Rev., 82, 538 (1951); G. W. Pratt Jr., ibid., 102, 1303 (1956); R. 
K. Nesbet, Proc. Roy. Soc, Ser. A, 230, 312 (1955). 

2.0 3.0 

R (A.U.) 

Figure 2. The energy of H2 as obtained fom Hartree-Fock (HF) 
and SOGI calculations, compared with the exact nonrelativistic 
energies. 

nucleus so that the wave function dissociates correctly. 
We know that the ground state of H2 is a singlet state; 
however, we can rewrite (4) as 

Vifoatfb + 0b<£a)(a/3 - M + 

( 0 a 0 b - <£b0a)(a/3 + /3a)] ( 4 ' ) 

where the first term in (4') corresponds to a singlet spin 
state and the second term corresponds to a triplet spin 
state. Thus, unless 

0a = 4>b 

(which makes the second term zero), the wave function 
has both singlet and triplet components. We are on 
the horns of a dilemma: to obtain the correct spin 
symmetry, we must doubly occupy the orbitals, re­
sulting in improper dissociation; to obtain the correct 
dissociation, we must singly occupy the oribitals, re­
sulting in the wrong spin symmetry. Since for studying 
chemical reactions we want both the correct dissociation 
and the correct spin symmetry, we must go beyond the 
Hartree-Fock approximation. Yet the interpretation 
of the many-electron wave function in terms of one-
particle orbitals has been of great use in forming a 
conceptually useful description of the states of atoms 
and molecules; we certainly want to retain this inter-
pretability in any improvement upon Hartree-Fock. 

Many workers have contributed to the development 
of methods designed to remove these problems with 
spin symmetry and dissociation while retaining the 
conceptual advantages associated with an orbital-type 
wave function. We will present here only a short 
sketch of these developments while describing the 
theoretical methods used herein. 

The Generalized Valence-Bond Method. In the 
Hartree-Fock method the antisymmetrizer, (J, took 
care of the Pauli principle but not the spin symmetry 
(i.e., a $ satisfies Pauli's principle for an arbitrary 
many-electron wave function $ but has a correct spin 
symmetry only for specific choices of <£). Now we will 
replace Ct by the group operator10 G1

7, which simul­
taneously takes care of both the spin symmetry and the 
Pauli principle (i.e., Giy<$ satisfies Pauli's principle and 
has the correct spin symmetry for arbitrary $). For a 

(10) W. A. Goddard III, Phys. Rev., 157, 81 (1967). 
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Figure 3. The SOGI orbitals of H2 as a function of internuclear 
distance. Atomic units are used (ref 7). 

two-electron singlet state, this wave function is 

Gi7[0a(l)0b(2)a(D/?(2)] = 
1AOWb + </>b0a)(a/3 - Pa) (5) 

Since (5) has the correct spin symmetry regardless of the 
form of (J)3, and <j>b, we need not make any restrictions 
(e.g., double occupation) on these orbitals. We now 
require that the orbitals be self-consistently optimized. 
This leads to a set of two one-particle equations to be 
solved rather than one as in Hartree-Fock. The re­
sulting self-consistent orbitals are called the generalized 
valence-bond (GVB) orbitals (previously such wave 
functions have also been referred to as Gl or GI wave 
functions).10 

The GVB orbitals for the ground state of H2 are 
shown11 in Figure 3. Here we see that as R decreases 
from infinity, the orbitals gradually and smoothly 
change from atomic functions to the correct molecular 
functions at equilibrium, Re. Comparing the GVB 
orbitals for Re (1.4 a0) with the atomic function, we 
find that the amplitude of the orbital has increased 
throughout the bonding region and has decreased in 
the nonbonding regions.10 As a result, the overlap 
^ of the GVB molecular orbitals 0 a and 4>b is larger 
than would be the overlap of the atomic functions at 
the same distance. A comparison between Figures 1 
and 3 shows a characteristic difference between Hartree-

(11) Based on GVB (or Gl) calculations using a basis of six Is Gaus­
sian functions and two 2p Gaussians contracted to three Is and one 2p 
functions on each proton. 

UJ 0 .9 

i.O 0 0 

DISTANCE (BOHR) 

Figure 4. The SOGI orbitals of He compared with the orbital of 
He+ and the HF orbital of He. 

Fock and GVB orbitals. Hartree-Fock orbitals can 
generally be taken as symmetry functions for the total 
molecular symmetry group, whereas the GVB orbitals 
may have lower symmetry. 

If <£a and <j)b of (5) are taken to be H Is orbitals 
(xa and Xb) on two protons 

(XaXb + X b X a ) ( ^ - fa) (6) 

then (6) is just the simple Heitler-London or valence-
bond wave function. This wave function can be im­
proved by adding in ionic components 

(XaXb + XbXa) + C(XaXa + XbXb) (7) 

and optimizing the mixing coefficient c (and the orbital 
exponents of the exponential basis functions, x) to obtain 
the Weinbaum-Pauling wave function.12 The inter­
pretation of wave function 7 seems more complicated 
than for the simple wave functions 5 or 6, but Coulson 
and Fischer13 showed that (7) could be written in the 
form (5) if 

4>a = Xa + C1Xb 

4>b = Xb + C'Xa 

Thus the GVB wave function of H2 can be considered 
as a generalization of the Coulson-Fischer form of the 
Weinbaum-Pauling wave function in which we now 
variationally solve for the best possible orbitals for 
(5), rather than restricting the orbitals to be expressible 
in terms of an H Is function on each center. 

Note that if in (5) we set <£a = 4>b = <£HF, we obtain 
the Hartree-Fock wave function (1), and if we set ^ 3 

and 0b to be atomic functions centered on each proton, 
we obtain the Heitler-London or valence-bond (VB) 
wave function. Thus the GVB method can be con­
sidered as a generalization and synthesis of the Hartree-
Fock and VB methods. 

For a two-electron atom such as H - , He, or Li+, the 
GVB orbitals split radially so that one of the orbitals 
is more concentrated near the nucleus than the other 
orbital,14 as shown for He in Figure 4. The tighter 

(12) S. Weinbaum, / . Chem. Phys., 1, 593 (1933) 
(13) C. A. Coulson and I. Fischer, Phil. Mag., 40, 386 (1949). 
(14) W. A. Goddard III, J- Chem. Phys., 48, 1008 (1968); note that 

for two electrons the wave functions variously referred to as GF, Gl, 
GI, and SOGI are all identical. 
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orbital cf>a is typically similar to the orbital for the one-
electron ion as shown in Figure 4, while the other 
orbital <f>b is more diffuse, something like the state of an 
electron moving in a shielded nuclear potential.16 

Wave functions of the form (5) for two-electron atoms 
were investigated by Shull and Lowdin,16 who dis­
cussed the interpretation in terms of radical correlation. 

For a four-electron singlet state, the simple valence-
bond wave function is taken to have the form 

^i = «[(4>a4>b + 4>iA)(<Ac0d + c/>d0a)a0a/3] (8a) 

But for more than two electrons one can generally 
construct several independent many-electron wave 
functions from the same set of orbitals. For example, 
if 

^2 = a[(0a</>d + 4>d<AaX</>c</>b + 0b0c)a,3a/3] (8b) 

then 

* = C1^1 + C2^2 (8c) 

is the most general wave function for a four-electron 
singlet state that uses each of four orbitals }$a, 4>b, <j>c, 
4>d} in each term. For the ground state of a molecule, 
a single coupling scheme as in (8a) often leads to a good 
description and we will refer to such a wave function as 
the valence-bond (VB) wave function. 

An important step forward was made by Hurley, 
Lennard-Jones, and Pople17a (HLJP) and by Parks and 
Parr,17b who discussed wave functions of the form (8a) 
and suggested using a simple constraint to simplify 
calculations; namely, that the orbitals of each pair 
[e.g., (cf>a, 4>h)] be required to be orthogonal to all other 
pairs [in this case (0C, <f>d)]. This restriction is called 
the strong orthogonality (SO) restriction and greatly 
simplified the calculations (although leading to a some­
what worse energy). HLJP also suggested the use of 
variational calculations to determine the best orbitals 
for each pair and considered more general expansions 
for each pair function. 

Other more general formulations of the problem of 
forming spin eigenfunctions (eigenstates of S2) that 
satisfy Pauli's principle were developed by Yamanouchi 
and Kotani,18 Matsen,19 Lowdin,20 and others.21 

Here we will concentrate on one particular approach 
that makes use of the group operators,22 G<7, which 
simultaneously take care of both the spin symmetry 
and the Pauli principle. That is, G4

7* satisfies Pauli's 
principle and has the correct spin symmetry for arbitrary 

For a four-electron singlet state, there are two dif­
ferent group operators, d and G2 = Gf, corresponding 
to the two ways of coupling the spins of four electrons 

(15) For H - the <j>h GVB orbital is quite diffuse, as expected, since 
the nuclear potential is nearly completely shielded. The Har t ree-Fock 
wave function does rather poorly for H", not even accounting for the 
stability of the system. [See W. A. Goddard III, Phys. Rev., 172, 7 
(1968).] 

(16) H . Shull and P.-O. Lowdin, J. Chem. Phys., 30, 617 (1959). 
(17) (a) A. C. Hurley, J. Lennard-Jones, and J. A. Pople, Proc. Roy. 

Soc, Ser. A, 220, 446 (1953); (b) J. M. Parks and R. G. Parr, / . Chem. 
Phys., 28, 335 (1958). 

(18) T. Yamanouchi , Proc. Phys.-Math. Soc. Jap., 18, 623 (1936); 
M. Kotani , A. Amemiya, E. Ishiguro, and T. Kimura, "Tables of Molec­
ular Integrals ," Maruzen Co., Tokyo, 1963. 

(19) F. A. Matsen, Advan. Quantum Chem., 1, 59 (1964). 
(20) P. O. Lowdin, Phys. Rev., 97, 1509 (1955). 
(21) For a brief review of these developments, see W. A. Goddard III, 

Int. Quantum Chem. Suppl, 3, 593 (1969). 
(22) W. A. Goddard III, Phys. Rev., 1S7, 73 (1967). 

into a singlet state. For the convenience of those un­
familiar with the Wigner projection operators, the 
wave functions G$x a r e expanded in terms of valence-
bond-type configurations 

G1-I-X = Ql(Mb + 0b4>a)(4>c0d + 0d0c)a/3a/3] (9a) 

Gf<I>X = ®{[4>a.<l>b + <t>b<f>a)(<t>c<t>d + 4>d<t>c) ~ 

(0a*d + </>d0a)«>b4>c + 4>c<t>b)]a(3a(3} (9b) 

where $ = </>a</>b<£c</>d and x = a/3a/3 [in (9) multiplicative 
constants have been deleted]. 

In the Gl-type methods the variational principle is 
applied to obtain the best possible orbitals for wave 
functions of the type in (9) but with no orthogonality 
restrictions placed upon the orbitals (the best wave 
function of the form (9a) is called the Gl wave function; 
the best of the form (9b) is called the GF wave func­
tion). The variational equations (self-consistent-field 
equations) for the orbitals have the form 

#ktf>k = ek0k (10) 

where the operator Hk contains the average effective 
fields due to electrons in the other orbitals of the system. 
Thus each orbital can be considered as the eigenstate of 
an electron moving in the average field due to electrons 
in the other orbitals. 

The solutions of (10) depend upon the coupling used 
[e.g., (9a) or (9b)] and hence the interpretation of the 
orbitals might depend upon the coupling. In fact, the 
best wave function that can be expressed in terms of 
products of the orbitals 

</>a</>b</>c0d 

will in general be a mixture of the two couplings of (9). 
This leads us to the spin-coupling-optimized GI (or 
SOGI) method,2324 in which the orbitals and spin 
coupling are simultaneously optimized. This again 
leads to orbital variational equations just as in (10). 
In the following discussions the completely optimized 
SOGI wave functions will be used for all systems. The 
term generalized valence bond (GVB) is also used to 
refer to SOGI wave functions but is a somewhat 
broader term and is also used to refer to Gl wave 
functions when the spin coupling differences are not 
great. 

For an atom such as Li we find two tight core-like 
functions very similar to the orbitals of Li+ and one 
much more diffuse valence function.23 As shown in 
Figure 5 this valence orbital is similar to the Hartree-
Fock valence orbital in the valence region, but differs 
markedly in the core region in that the SOGI valence 
orbital has no node. This illustrates another difference 
between SOGI and Hartree-Fock: orthogonalizing the 
Hartree-Fock orbitals does not change the energy but, 
because of the less restrictive form of the SOGI wave 
function, orthogonalizing the SOGI orbitals generally 
raises the energy. It is possible to modify greatly the 
shape of the Hartree-Fock valence orbital in the region 
close to the nucleus (while not changing the total energy) 
by mixing in various amounts of core character 

0val' = $val — C0Core 

(23) R. C. Ladner and W. A. Goddard III, / . Chem. Phys., 51, 1073 
(1969). 

(24) See also related work by U. Kaldor and F. E. Harris, Phys. Rev., 
183, 1 (1969); S. Lunell, ibid., 173, 85 (1968); S. Hameed, S.S. Hui, 
J. I. Musher, and J. M. Schulman, / . Chem. Phys., 51, 502 (1969). 
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DISTANCE FROM NUCLEUS (BOHR) 

Figure 5. The valence orbital of Li as obtained from SOGI and HF 
calculations. 

Figure 6. The SOGI valence orbitals of LiH as a function of 
internuclear distance. Atomic units are used (ref 7). 

Indeed, there is a whole range of values of c for which 
the new valence orbital would be nodeless. Thus the 
shape of the Hartree-Fock valence orbital in the core 
region can have no special physical significance. On 
the other hand, the SOGI orbitals of Li are completely 
specified by minimizing the energy and the shape of 
the orbital even in the core region could have some 
significance. 

Now consider the LiH molecule; there are four 
electrons and four orbitals 

01a, 01b> 02a, 02b 

Two orbitals, 0ia and 0 l b , are essentially the same as the 
core orbitals of Li and Li+ and we will not discuss them 
further (they are, of course, solved for self-consistently 
in the calculations). The remaining orbitals (called 
the valence orbitals) are responsible for the bond. As 
can be seen from Figure 6, 02a becomes an Li valence 
orbital for large R, while 02b becomes an H Is atomic 
orbital.23 As R is decreased, 02b changes very little 
but 02a changes a great deal, increasing substantially 
throughout the bonding region. Since 02b changes 
only slightly from the form of an H orbital, one might 
consider </>2a as primarily responsible for the bond in 

(25) All of the LiH and LiH? calculations reported here are based on 
SOGI calculations using a basis of 13 Is Gaussian functions and 3 2p 
Gaussians contracted to 5 Is and 1 2p functions on the Li plus the basis 
of ref 11 on the H. 

Figure 7. The SOGI orbitals for the H2 + D -* H + HD exchange 
reaction. Each column corresponds to a different orbital and each 
row to a different nuclear configuration. The middle row is at the 
saddle point. 

LjH 26,27 j n t n j s c a s e o n e w o u i d expect LiH+ to be 
only very weakly bound (which it is). 

For larger atoms there are additional changes from 
Hartree-Fock because nonbonding pairs of orbitals 
also split in SOGI. However, rather than discussing 
the SOGI orbital picture for larger molecules, we will 
now consider some simple H-exchange reactions in­
volving the H2 and LiH molecules. 

Results 
Some Simple Exchange Reactions. First we will 

consider the H2 + D ^ H + HD exchange reac­
tion. There are three electrons and three orbitals. 
Two of these orbitals (call them 0 i a and 0ib) start out 
as the bonding orbitals for the reactant molecule H2 and 
the other orbital (call it 02a) starts out as a nonbonding 
orbital on the D. As H2 and D approach each other, 
the three orbitals delocalize over the three centers in 
the transition region and then relocalize again as the 
products move apart. The changes in the orbitals 
along the reaction path are shown in Figure 7, where 
each column corresponds to one of the three orbitals 
and each row corresponds to a specific nuclear con­
figuration (the positions of the nuclei are indicated by 
the triangles). The first row corresponds to a point 
where the interaction between the H2 and D is just 
starting to be significant, the third row corresponds to 
the transition state, and the second row is an inter­
mediate point. Rows four and five are analogous to 
rows two and one but on the product side of the reaction. 

We see that the orbitals change continuously and that 
the bonding pair [0 la, 4>lh] of the reactants remains 
nodeless and highly overlapping during the reaction and 
becomes the bonding pair of the products. On the 
other hand, the free D orbital (02a) builds in a node in 
the region of the pair [0ia, 0ib] and retains low overlap 
with this bonding pair during the reaction, becoming 
the free orbital of the products. Thus in this exchange 
reaction, the orbitals also exchange. 

In Figure 8 we show a similar plot of the orbitals for 
the LiH + H ^ Li + H2 reaction (we do not discuss 
the two Li core orbitals since they are essentially un­
changed during the reaction; they are of course solved 
for self-consistently along with the other orbitals). The 
orbitals 02a and 02b start off as the bonding pair on LiH, 

(26) F. E. Harris and H. S. Taylor, Physica, 30, 105 (1964). 
(27) W. E. Palke and W. A. Goddard III, / . Chem. Phys., 50, 4524 

(1969). 
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become delocalized in the transition region (row C is 
at the saddle point or transition state of the reaction), 
and then become localized as an H2 bonding pair in the 
product region. At the same time, the free H orbital 
(03a) of the reactants delocalizes over the three centers 
in the transition region and relocalizes onto the Li in 
the product region. Thus just as in the H2 + D 
reaction, the orbitals exchange during the reaction. 

Discussion 

First we consider the exchange of orbitals that occurs 
in these reactions. We know that these reactions have 
low activation energies, in both cases about one-tenth 
of the energy to break the bond of the reactant molecule. 
Therefore, we must preserve the bond for all points on 
the reaction path. What is often stated is that the 
bond of the reactant gradually weakens while the bond 
of the product gets stronger, with the whole system 
retaining essentially one full bond.28 However, Figures 
7 and 8 allow a somewhat more complete interpretation. 
Here we see that there is one pair of orbitals describing 
the bond of the reactants and one pair describing the 
bond of the products. Thus in each case one might 
identify the bond with the pair of orbitals in the same 
regions. But from Figures 7 and 8 we see that the 
bonding pair of orbitals of the reactant changes con­
tinuously during the reaction to become the bonding pair 
of the products. That is, one might view such a con­
certed reaction as the shifting of the bonding pair of 
orbitals from one pair of centers to a new pair rather 
than as the breaking of one bond and simultaneous 
formation of a new one. Of course, while the bonding 
pairs are shifting the other orbitals of the system must 
also readjust. 

In Figures 7 and 8 we note that in the transition 
region, two valence orbitals are nodeless and bonding­
like ; however, the third valence electron is not bonding­
like at all but has nodes that serve to decrease its overlap 
with the bonding orbitals. 

Chemical Bonds and the Permutational Coupling of 
Orbitals. In order to understand this behavior, con­
sider the singlet state of the H2 molecule described by 
the SOGI wave function (5). The optimum orbitals, 
</>a and 0b, have larger overlap than do atomic orbitals 
centered on the respective protons. A primary reason 
for this is that the dominant term in the bonding energy 
of H2 is an exchange term 

-T5ab»/(1 + M (H) 

where r is positive and relatively insensitive to both 
R and optimization of <j>a and 0b.29 By increasing 
Sab we can decrease (11) (increase the bonding); 
however, large increases in Sah would increase the 
other contributions to the total energy. The result is 
a moderate increase in Sab as R decreases (see Figure 3). 

For a two-electron triplet state, the SOGI wave 
function of H2 is 

(0a0b - 0b0a)(«/3 + /3a) (12) 

(28) For example, see E. S. Gould, "Mechanism and Structure in 
Organic Chemistry," Holt, Rinehart and Winston, New York, N. Y., 
1959. 

(29) (a) C. W. Wilson, Jr., and W. A. Goddard III, Chem. Phys. 
Lett., 5, 45 (1970); (b) for further discussion of the relation between 
permutational coupling of orbitals and chemical bonding, see C. W. 
Wilson Jr., Thesis, California Institute of Technology, 1970. 

Figure 8. The SOGI orbitals for the LiH + H - * Li + H2 exchange 
reaction. Each column corresponds to a different orbital and each 
row to a different nuclear configuration. Row C is for the saddle 
point geometry. 

where the orbitals can be taken as localized near the 
respective protons.30 In this case the dominant term 
in the bonding energy is proportional to 

+ rSab
2/(l - S^) (13) 

where r is the same as in (11). Thus (13) and the total 
energy are decreased by decreasing the overlap. 

Orbitals coupled as (5) are said to be symmetrically 
coupled whereas those of (12) are said to be antisymmetri­
cally coupled. We see above that symmetric coupling 
leads to bonding interactions and favors large orbital 
overlaps, whereas antisymmetric coupling leads to 
antibonding and favors small orbital overlaps. 

For three electrons the totally symmetric combination 
of three orbitals would be 

<t>a<t>b4>c + </>b0c</>a + 0c</>a</>b + 0a</>c</>b + 

0b0a0c + <Ac0b4>a (14) 

while the totally antisymmetric combination would be 

0a0b</>c + 0b0c0a + <£c0a</>b ~ 

0a0c0b — </>b<£a<£c — $c</>b0a (15) 

For a system such as the ground states of H2 + H or 
He + H, wave function (14) would lead to bonding just 

(30) Expression 13 is the dominant term in the bonding energy if the 
orbitals of (12) are atomic-like orbitals. The orbitals of (12) can ac­
tually be taken as orthogonal to each other and delocalized without 
changing the total energy; however, this would lead to a change in the 
form of the terms dominating the bonding energy, which would no 
longer be so simply related to that of the singlet state. 
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as did (5), whereas (15) would lead to antibonding. In 
order to satisfy Pauli's principle, the symmetric spatial 
function (14) would have to be combined with a totally 
antisymmetric spin function [analogous to (15)]. How­
ever, three spin-one-half particles cannot be combined 
into a totally antisymmetric spin function (such a spin 
function would have the form of (15) with 0 a = a, 
4>b = a, and 0C = /3 and would lead to a zero result). 
Hence (14) is not an allowed wave function for electrons 
(if it were, H3 would be strongly bound). 

Besides (15) (which corresponds to a quartet state), 
there are other allowed wave functions, corresponding 
to doublet states. These doublet-state wave functions 
involve both symmetric and antisymmetric coupling, 
e.g. 

[0a(l)0c(3) - 0c(l)0a(3)]0b(2) + 

[0b(D0c(3) - <Ml)0b(3)fta(2) + 
W>a(2)0c(3) - 0c(2)0a(3)]0b(l) + 

[0b(2)0c(3) - 0c(2)0b(3)]0a(l) (16) 

In (16) 4>c occurs only in the antisymmetric combinations 
(in brackets), whereas the total wave function (16) is 
unchanged (symmetric) with respect to interchange of 
orbitals 0 a and </>b. The wave function (16) can be 
viewed as symmetric coupling of 0 a and <̂>b followed by 
antisymmetric coupling of <j>c to the 0 a0b pair. 

For a system such as He + H, the two orbitals on 
the He are symmetrically coupled and the H orbital 
must be antisymmetrically coupled to this pair. Thus 
the interatomic potential terms (those involving 
coupling of the H orbital with one of the He orbitals) 
are positive as in (13), resulting in an energy increase 
as R decreases, leading to an unbound system.29b In 
order to reduce the repulsion energy the H orbital 
adjusts so as to have a smaller overlap with the He 
orbitals. 

At large R the coupling for H2 + H is the same as 
for He + H and the energy again increases as R de­
creases. As with He + H the free H-atom orbital 
readjusts to retain a small overlap with the H2 bonding 
orbitals. As the distance between the left H's ap­
proaches that between the right two, the bonding or­
bitals become gerade and the unpaired orbital becomes 
ungerade so that reactant orbitals change smoothly 
with the product orbitals. 

For LiH + H the orbital coupling of the valence 
orbitals is the same as for H2 + H, and we expect 
similar results, except that the orbitals at the saddle 
point are not exactly gerade or ungerade (but have the 
same nodal character as for H2 + H). 

Reactions. Thus, to form a strong two-electron bond 
at all points along the reaction path, the first two 
orbitals retain high overlap and introduce no nodes in 
the bonding region. Because of Pauli's principle, 
however, the third orbital must be antisymmetrically 
coupled to the first pair. For this coupling the energy 
is minimized by the third orbital obtaining small 
overlap with the first pair, and it remains nonbonding 
during the reaction. Since the third orbital cannot be 
bonding-like simultaneously with the other two being 

bonding-like, we cannot form a new bond at the same 
time that we break an old bond (which would require 
all three orbitals to be partially bonding at some point). 
Thus we must preserve the bonding character in the 
present bond and move the bond to the new centers. 

In the case of H3 the bonding orbitals at the transition 
state (or saddle point) are gerade and the nonbonding 
orbital is ungerade (in order to minimize the repulsive 
interactions with the bonding orbitals). For LiH2 we 
have no inversion symmetry at the transition state and 
the orbitals will not be exactly ungerade or gerade. 
Even so, we see in Figure 8 that the bonding orbitals 
(02a and 02b) become in a sense spatially symmetric 
and the nonbonding orbital is in a sense spatially 
antisymmetric. We might describe </>2b as an inner 
bonding orbital, bonding the central H equally strongly 
to the outer atoms. Similarly, we might describe 02a 

as an outer bonding orbital (equally centered in both 
bonding regions), bonding each outer atom equally 
strongly to the inner one. Thus these orbitals are 
symmetric in the sense that they are equally bonding in 
each of the bond regions. That is, they are symmetric 
in an energy or bond-strength sense rather than in a 
group theoretical sense. Similarly, the nonbonding 
orbital is antisymmetric in the sense that it is equally 
(but only slightly) deleterious to both bonds; i.e., it is 
antisymmetric in an energy sense rather than a group 
theoretical sense. 

In order to examine the importance of the non-
bonding orbital being ungerade, we carried out a cal­
culation (using the geometry of the saddle point) in 
which the third orbital of H2D was forced to be gerade. 
In this case the energy increased by 6.5 eV.31 Thus if 
we do not allow the third orbital to be antisymmetric to 
the bonding pair, the activation energy would be much 
greater than the bond energy. That is, the anti­
symmetric character of the nonbonding orbital is 
essential to retaining the bond during the concerted 
reaction. Because of the required antisymmetry for 
the transition state geometry, the nonbonding orbital 
changes phase during the reaction. 

Summary 

In a concerted three-center exchange reaction such 
as those considered above, the bonding pair of orbitals 
of the reactants moves to become the bonding pair of 
orbitals of the products. At the same time, the other 
orbital in this region readjusts to remain approximately 
orthogonal to the bonding pair and as a result changes 
phase as it shifts centers during the reaction. We will 
show elsewhere32 that the application of these concepts 
to larger systems leads to predictions of selection rules 
for chemical reactions, in general agreement with 
experiment and with the very successful Woodward-
Hoffmann rules.33 

(31) The wave function resulting from forcing the outer orbital to be 
gerade just corresponds a state of the H2 + D* ;=: H* + HD reaction, 
where H* is an n = 2 state of the H atom. 

(32) W. A. Goddard III, J. Amer. Chem. Soc, 92, 7520 (1970); 
ibid., in press. 

(33) R. B. Woodward and R. Hoffmann, Angew. Chem., Int. Ed. 
Engl, 8, 781 (1969). 
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